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Since Bateson’s discovery that genes can suppress the phenotypic effects of other genes, gene inter-

actions—called epistasis—have been the topic of a vast research effort. Systems and developmental

biologists study epistasis to understand the genotype–phenotype map, whereas evolutionary biologists

recognize the fundamental importance of epistasis for evolution. Depending on its form, epistasis may

lead to divergence and speciation, provide evolutionary benefits to sex and affect the robustness and

evolvability of organisms. That epistasis can itself be shaped by evolution has only recently been realized.

Here, we review the empirical pattern of epistasis, and some of the factors that may affect the form and

extent of epistasis. Based on their divergent consequences, we distinguish between interactions with or

without mean effect, and those affecting the magnitude of fitness effects or their sign. Empirical work

has begun to quantify epistasis in multiple dimensions in the context of metabolic and fitness landscape

models. We discuss possible proximate causes (such as protein function and metabolic networks) and ulti-

mate factors (including mutation, recombination, and the importance of natural selection and genetic

drift). We conclude that, in general, pleiotropy is an important prerequisite for epistasis, and that epistasis

may evolve as an adaptive or intrinsic consequence of changes in genetic robustness and evolvability.
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1. INTRODUCTION
How an organism’s genotype determines its phenotype is

the focus of vast research efforts in developmental and

systems biology [1,2]. It is now clear that the mapping

between genotype and phenotype is complex, and most

phenotypes result from intricate gene interactions.

These interactions, recognized as deviations from additive

genetic effects on the phenotype, and collectively called

epistasis, are central to evolutionary theories, including

those seeking explanations for divergence and speciation,

recombination, genetic robustness and evolvability [3,4].

These theories make detailed predictions regarding the

consequences of epistasis. In contrast, we know very

little about the causes of epistasis—in particular, how

gene interactions are shaped by natural selection and

genetic drift.

The notion that epistasis not only influences evolution,

but can also itself be altered as a consequence of changes

of an organism’s genetic architecture, is relatively recent.

In a seminal study, Malmberg [5] observed that recombi-

nation alleviated epistasis between beneficial mutations in

bacteriophage T4. However, it took almost three decades

before theoretical studies addressed how epistasis evolves

[6–13]. The purpose of this review is to survey existing

ideas about the proximate (mechanistic) and ultimate

(evolutionary) causes of epistasis. We will review defi-

nitions and various forms of epistasis, survey the
r for correspondence (arjan.devisser@wur.nl).
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empirical evidence of epistasis, and discuss theoretical

and empirical studies that address its causes.
2. TERMINOLOGY
Over a century ago, Bateson et al. [14] introduced the

term epistasis to describe the suppression of an allelic

phenotype by an allele at another locus. Later, Fisher

[15] ‘rediscovered’ epistasis by finding deviations from

expected additive effects on quantitative traits of alleles

occurring at the same (dominance) or different loci. In

the evolutionary literature, with reference to Fisher’s defi-

nition, the term epistasis includes all deviations from

independent effects of alleles at different loci on a pheno-

type [3,4,16]. On which scale effects are called

independent depends on the consequences of epistasis

in which one is interested. As our focus is on the evol-

utionary role of epistasis, we consider epistasis at the

level of fitness, where deviations from multiplicative

effects are relevant.

We make two distinctions. First, we distinguish

between unidimensional and multidimensional epistasis

[17]. Unidimensional epistasis refers to deviations from

a linear relationship between mean log fitness and the

number of alleles affecting fitness (figure 1a). This form

of epistasis has also been called directional or mean epis-

tasis, and can be positive or negative depending on

whether the fitness of genotypes carrying multiple

mutations is higher or lower than expected from indepen-

dent effects, respectively. Antagonistic epistasis among
This journal is q 2011 The Royal Society
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Figure 1. (a) Unidimensional epistasis. The dashed line indicates the multiplicative null model (no epistasis) for the average
fitness of mutants carrying the same number of mutations, here with negative effect; the green and red curved lines are
examples of positive and negative epistasis, respectively. (b) Multidimensional epistasis. The cube shows an example of a fitness
landscape of three loci, where the nodes are genotypes with mutant (‘1’) or wild-type (‘0’) alleles. The arrows point towards

genotypes with higher fitness, and their thickness indicates the size of the fitness increment. In this example, a description of
multidimensional epistasis includes the presence of sign epistasis (the same allele having opposite fitness effects in different
backgrounds, e.g. apparent from the addition of allele ‘1’ at the third locus in 100)101 versus 110)111) and two fitness
maxima (100 and 111).
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deleterious mutations and synergistic epistasis among

beneficial mutations represent positive epistasis, whereas

the opposite situations represent negative epistasis. Multi-

dimensional epistasis refers to the individual interactions

among a given set of alleles and provides a more complete

description of the interactions within a fitness landscape

involving these alleles (figure 1b). This description

includes features such as the variation of epistasis

among pairs of alleles, the number of fitness maxima,

and measures of the accessibility of particular genotypes

and pathways. Importantly, this type of epistasis can be

common even if unidimensional epistasis is absent.

Second, within pairs of interacting alleles, one can

distinguish between magnitude and sign epistasis. Magni-

tude epistasis refers to interactions where the combined

effect of two alleles deviates from multiplicative effects,

but in a way that does not change the sign of either allele’s

fitness effect. Sign epistasis refers to ‘stronger’ inter-

actions, where the sign of an allele’s contribution to

fitness changes with genetic background [18].
3. EMPIRICAL EVIDENCE OF EPISTASIS
(a) Unidimensional epistasis

Motivated by its relevance for explaining the evolution of

sex [19,20], and because its detection involves less effort,

most empirical work on epistasis has focused on finding

unidimensional epistasis among random mutations.

Studies have examined epistasis in a variety of organisms,

from viruses to plants and fruitflies (reviewed in earlier

studies [21,22]). Some studies reported negative epistasis

[23–27], but others found positive epistasis [28–32] or

no prevailing epistasis [33–38].

(b) Multidimensional epistasis

Two recent research themes seek to provide a more com-

plete empirical picture of epistasis. The first theme seeks

to understand the metabolic basis and general organization

of epistasis by studying pairwise interactions among

deleterious mutations at a genome-wide scale. These ana-

lyses show (i) no epistasis [1,39] or prevailing positive

epistasis [28,40]; (ii) extensive variation in the sign of
Proc. R. Soc. B
epistasis; (iii) a modular pattern of epistasis, with similar

interaction profiles for genes involved in the same func-

tional module [1,39,40]; and (iv) a hierarchical network

structure, with most genes having few, but some (‘hubs’)

having many interactions [1].

The second approach involves the study of all pos-

sible (i.e. 2n) interactions among a given set of n—often

beneficial—mutations. Such complete sets provide a

detailed view of part of the fitness landscape for a given

environment (figure 1b), including the extent of sign epis-

tasis and the accessibility of the global peak under defined

evolutionary scenarios [41–43]. At present, fitness land-

scape data exist for sets of four to eight mutations for

the enzymes isopropylmalate dehydrogenase [44],

TEM-1 b-lactamase [43] and sesquiterpene synthetase

[45], the malaria parasite Plasmodium falciparum [46],

the fungus Aspergillus niger [42,47], and the bacteria

Escherichia coli [48] and Methylobacterium extorquens [49].

These studies, as well as studies examining incomplete

subsets of mutants [1,27,28,36,37,48,50–55], show that

(i) multidimensional epistasis can be strong even when

no significant unidimensional epistasis is detected, and

(ii) sign epistasis, although not ubiquitous, is quite

common and sometimes leads to fitness landscapes with

multiple maxima [42,47,56]. In addition, some recent

studies have found prevailing negative epistasis among

beneficial mutations [48,49,52–54], which may explain

the declining rate of adaptation often observed during

long-term evolution in a constant environment [57,58].
4. CAUSES OF EPISTASIS
Epistasis results from the way in which genetic elements

interact with each other in their ‘causation’ of a pheno-

type and, ultimately, fitness. For instance, intra-gene

epistasis may result from non-independent effects of

mutations on RNA stability and enzyme activity or stab-

ility, whereas inter-gene epistasis may result from

protein interactions and the structure of metabolic net-

works (see [59] for a detailed review of molecular

mechanisms of epistasis). Predicting these interactions

and their effects on fitness requires the full consideration

http://rspb.royalsocietypublishing.org/
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Figure 2. A simple metabolic network showing examples of
positive (green line), negative (red line) and no (black line)
epistasis between loss-of-function gene mutations (X). The
synthesis of biomass (black square) from biomass components
(such as amino acids or nucleotides, black circles) requires an

optimal allocation of a common nutrient (white square)
through intermediate metabolites (white circles). Negative
epistasis requires that the two pathways affected are the only
two involved in the production of an essential biomass com-
ponent (leading to ‘synthetic lethality’ if the mutations are

knockouts); if alternative pathways exist or when affected
pathways are involved in distant parts of the metabolism,
then multiplicative effects between the two mutations are to
be expected (black line). Adapted from Segrè et al. [39].
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of an organism’s development and physiology, and

remains a major long-term goal of systems biology.

Some progress has been made. For example, a model of

bacteriophage T7 predicts aspects of growth dynamics

[60], and metabolic models can predict the effect of

gene deletions on growth efficiency [61,62].

Besides lacking insight into the direct causation of epi-

stasis, we do not yet understand how evolution shapes the

various genetic architectures associated with different pat-

terns of epistasis. Here, we will discuss how epistasis arises

from the workings and constraints of enzymes and their

metabolic networks, from environmental conditions and

from its effect on robustness and evolvability.

(a) Metabolic models

Metabolic models have been developed to predict epistasis

between mutations that affect either the same or different

enzymes. Within a single enzyme, epistasis may result

from the quantitative relationship between enzyme activity

and fitness. This relationship is typically linear only at low

enzyme activity levels, rapidly levelling off at higher levels

such that further increases in activity will cause only

small fitness gains [63,64]. For this reason, mutations

with additive effect on enzyme activity will typically show

negative epistasis for fitness [65].

Enzymes typically function together in metabolic

networks, and the interactions inherent in these relation-

ships play a key role in determining epistasis. Szathmáry

[65] modelled a linear pathway to study this relationship,

assuming that mutations had additive effects on enzyme

activity and that activity was near the optimum. Four

regimes were considered, fitness being proportional to

either maximum or optimum flux, or maximum or opti-

mum metabolite concentration. When mutations

affected different enzymes, the direction of epistasis

depended on the selection regime: mutations interacted

positively when selection was for maximum flux, but

negatively when selection was for optimum flux or metab-

olite concentration. Similar to enzymes in a linear

pathway under selection for maximum flux, mutations

affecting transcription and translation showed positive

epistasis in Pseudomonas aeruginosa [66].

Segrè et al. [39] used a large-scale model of the yeast

metabolic network to predict epistasis between pairs of

gene-knockout mutations. If mutations affected serial

steps of a rate-limiting pathway, then they tended to have

redundant effects leading to positive epistasis (figure 2,

green line). However, if mutations affected steps in

different pathways, then the sign of epistasis depended on

the redundancy and relatedness of the affected pathways.

If they are unrelated, then mutations tend to show no epi-

stasis (figure 2, black line). If they are related pathways

producing the same product, then mutations tend to

interact negatively (figure 2, red line), provided that no

other pathways exist. As two random mutations will prob-

ably affect different pathways, the variation in observed

patterns of epistasis seen in different yeast studies

[1,28,39,40] may be explained by variation in the meta-

bolic function and average fitness effect of affected genes

within each dataset [28], or, alternatively, by differences

in the statistical power to detect epistasis [67].

The observation of prevailing negative epistasis

among beneficial mutations (see above) and the frequent

reports of positive epistasis among deleterious mutations
Proc. R. Soc. B
[28–32,68,69] evoke the general view that epistasis

results from the buffering effects of physiological homeo-

stasis. If correct, then it remains unclear to what extent

this pattern of epistasis arises intrinsically from metabolic

kinetics and network organization, when compared with

as a direct consequence of natural selection, perhaps for

increased robustness or evolvability (see below).

(b) Pleiotropy as a precondition for epistasis

The simple metabolic models mentioned above assume

that mutations affect a single phenotype. However,

mutations are often pleiotropic, simultaneously affecting

multiple phenotypes. Pleiotropy has been suggested as a

source of epistasis on the basis of Fisher’s geometric

model, which describes the relationship between multiple

phenotypes and fitness [70,71]. This is well illustrated by

negative pleiotropy, where mutations with a positive effect

on one phenotype have a negative effect on another phe-

notype. In the context of adaptive evolution, negative

pleiotropy is a precondition for sign epistasis, because it

allows compensatory mutations to specifically ‘repair’

the negative pleiotropic effects of previously selected

mutations (figure 3).

A common form of pleiotropy within proteins is the

simultaneous effects of mutations on enzyme activity

and stability [72,73]. Mutations that stabilize proteins

carrying an activity-increasing mutation have been

found to be neutral or deleterious by themselves [73],

an example of sign epistasis. At a genomic scale, compen-

satory mutations that undo the negative pleiotropic effects

of antibiotic-resistant [74–77] or other adaptive

mutations [78] may have negative effects in the wild-type

background. These results yield the view of adaptation

initiated by large-benefit mutations with substantial pleio-

tropic costs [79], followed by compensatory mutations

that repair negative pleiotropic effects.

http://rspb.royalsocietypublishing.org/
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Figure 3. Pleiotropy provides opportunities for epistasis. P1 and P2 are two phenotypes with effects on fitness (W) encoded by

genes G1 and G2. (a) No pleiotropy: genes encoding P1 or P2 have no pleiotropic effects and lack opportunities for mutual
epistatic interactions (red double arrows), except at the level of fitness. (b) Pleiotropy: owing to pleiotropic effects of G1 and
G2, additional opportunities for epistatic interactions arise at the level of the phenotype. When P1 and P2 are phenotypes
that show a fitness trade-off (e.g. survival and reproduction for organisms, or enzyme activity and stability for proteins), pleio-
tropic effects of G1 and G2 allow compensatory (i.e. sign epistatic) mutations to alleviate negative pleiotropic effects of previous

mutations with a net beneficial effect.
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Poon & Chao [80,81] studied the frequency and func-

tional origins of compensatory mutations in

bacteriophage fX174. They found that compensatory

mutations were common and often occurred in the

same gene as the deleterious mutation. Compensatory

mutations were most effective when both they and the

original deleterious mutation had strong effects on the

local physical properties, and thus were most likely to

have pleiotropic consequences.

(c) Environment

As fitness is the product of a genotype in an environment,

environmental conditions may have direct effects on epi-

stasis [82]. An intuitive source of negative epistasis

among deleterious mutations is truncation selection

[83]. When resources are scarce, the effect of combi-

nations of deleterious mutations might cause a much

larger fitness cost, perhaps even death, than in a benign

environment. Several authors have suggested this connec-

tion based on ecological [20,83,84] or metabolic [60,65]

arguments. Some studies have looked at the effect of

environmental stress on the form of epistasis, but without

consistent effects [21,85–87].

The degree of environmental complexity might also

influence the evolution of epistasis. If in multiple-niche

environments beneficial mutations have negative pleiotro-

pic effects on adaptation to alternative niches, then there

would be scope for sign epistasis and rugged fitness land-

scapes. Consistently, evolved bacterial populations

showed greater divergence in complex than in simple

environments [88–90]. Moreover, if environmental con-

ditions fluctuate, then a modular organization of

epistatic interactions may evolve, as was found during

artificial selection of electronic circuits in environments

with modularly varying goals, but not with fixed or

randomly varying goals [91].

Finally, environmental conditions can have long-term

effects on epistasis by influencing the strength of selection
Proc. R. Soc. B
relative to drift (e.g. through changes in population size),

with possible consequences for the evolution of genetic

robustness and genome complexity, both of which are

associated with particular patterns of epistasis.

(d) Robustness

Based on the predicted correlation between the effect size

of individual deleterious mutations and the strength of

unidimensional epistasis, epistasis has been associated

with genetic robustness—the insensitivity of organisms

to the impact of mutations [92,93]. The relationship

between genetic robustness and epistasis is, however,

complex, and it is unclear whether it is an intrinsic or

an adaptive feature of genomes. Recently, models have

been used to study the evolution of alleles that modify

epistasis among deleterious mutations when populations

are close to a fitness optimum [7–11]. These models

suggest that both positive and negative epistasis can

evolve as a consequence of purifying selection against

deleterious mutations, depending on whether selection

for robustness is driven by the negative impact of single

or multiple mutations. They assume that drift and recom-

bination challenge organisms with more mutations than

strong selection and clonal reproduction; hence, robust-

ness is determined by the reduced fitness effect of

multiple and single mutations, respectively. If the mean

cost of single mutations is reduced by selection, then

interactions may become more negative, as the combined

cost is likely to increase if one assumes that total fitness

variation remains constant [94]; the reciprocal argument

predicts positive epistasis whenever robustness is selected

to decrease the cost of multiple mutations.

Another link between robustness and epistasis is via

the buffering effect of specialized chaperones. These

modifiers of robustness can cause positive epistasis if

they are induced by the accumulation of deleterious

mutations [30]. Yet another suggested robustness mechan-

ism is genetic redundancy, thought to be common in

http://rspb.royalsocietypublishing.org/
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complex genomes. This form of robustness has been associ-

ated with negative epistasis [95]. Mutations at one copy of a

duplicated element are silent as long as the other copy

remains unmutated; the more copies of the element exist,

the more negative epistasis should be [96]. However,

this mechanism seems inconsistent with the predicted

importance of drift owing to small effective population

size in organisms with complex genomes [97], where

robustness should be associated with positive epistasis [8].

This discrepancy may be explained by the fact that the

model predicting positive epistasis under drift does not

allow genome size to evolve, thereby preventing negative

epistasis from evolving as a result of increased genetic

redundancy.

(e) Evolvability

Organism evolvability has been associated with particular

patterns of epistasis. For instance, high mutation rates

have two potential consequences for the evolution of epista-

sis. First, high mutation rates can weakly select for genetic

robustness [92,98]. Depending on the relative importance

of drift and selection, and the time scale considered, this

may lead to positive or, more likely, negative epistasis.

Second, high mutation rates and large population sizes

may facilitate selection of combinations of individually

deleterious mutations that would be unlikely to arise in

conditions where mutations fix sequentially [99].

The realization that recombination may change epistatic

interactions involving newly arising mutations originated

from the work of Malmberg [5], who studied adaptation

of bacteriophage T4 to resistance against the drug proflavin

in populations with varying recombination. He found

significant positive epistasis in low-recombination lines

and effectively no epistasis in high-recombination lines.

In other words, recombination selected for ‘generalist’

adaptive mutations that conferred a benefit on many

genetic backgrounds, whereas the mutations accumulating

in the absence of recombination made up positively

interacting co-adapted complexes.

More recently, the effect of recombination on epistasis

has been studied using models of gene-regulatory circuits.

Recombination caused increased genetic robustness and

negative unidimensional epistasis [6]. Interestingly, this

response might promote the maintenance of recombination

through the more efficient elimination of deleterious

mutations [20]. It was also found that circuits evolved

with recombination were enriched for cis-regulatory

complexes [12], and hence had an increased modular

structure. Evolution experiments with digital organisms

similarly found that recombination increased robustness

and modularity, and reduced unidimensional epistasis

[13].

A modular organization of gene interactions enhances

evolvability by reducing constraints from epistasis and

pleiotropy. Reduced pleiotropy allows the relatively inde-

pendent evolution of functions encoded by the modules,

thereby increasing evolvability in sexual populations

[100,101]. Modular epistasis may thus have evolved as a

consequence of its association with evolvability. Similarly,

recombination may have found ways to bolster its own

evolution: by generating robust genomes showing nega-

tive and modular epistasis, it may have enhanced

selection against deleterious mutations and increased its

long-term evolvability [21,102].
Proc. R. Soc. B
5. CONCLUSION
Epistasis plays a prominent role in many evolutionary pro-

cesses and has been the subject of substantial theoretical

attention. Experiments have measured mean and individ-

ual epistatic effects over deleterious, random and

beneficial mutations. These studies generally seek to

link observed patterns of epistasis to metabolic functions

and models, or quantify the complete pattern of epistasis

in all dimensions among limited sets of mutations to

explore the structure of fitness landscapes. This endea-

vour has just begun and, from both theoretical and

experimental perspectives, key questions remain largely

unexplored. We have argued that the potential for feed-

back in the relationship between selection and epistasis

is one such question. Both the mean effect of epistasis

and the type of individual interactions between selected

alleles can change, depending on the selective and genetic

environment. Understanding these dynamics is necessary

to determine the role of epistasis in evolution. In the

future, the challenge will be to develop technical and stat-

istical approaches to determine these changes and to

further develop theory that, by considering epistasis as a

dynamic property of organisms, considers how the feed-

back between selection and epistasis can influence

evolutionary outcomes.
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